skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Arbey, Alexandre"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Arbey, Alexandre; Bélanger, G.; Desai, Nishita; Gonzalo, Tomas; Harlander, Robert V. (Ed.)
    A trio of automated collider event analysis tools are described and demonstrated, in the form of a quick-start tutorial. AEACuS interfaces with the standard MadGraph/MadEvent, Pythia, and Delphes simulation chain, via the Root file output. An extensive algorithm library facilitates the computation of standard collider event variables and the transformation of object groups (including jet clustering and substructure analysis). Arbitrary user-defined variables and external function calls are also supported. An efficient mechanism is provided for sorting events into channels with distinct features. RHADAManTHUS generates publication-quality one- and two-dimensional histograms from event statistics computed by AEACuS, calling MatPlotLib on the back end. Large batches of simulation (representing either distinct final states and/or oversampling of a common phase space) are merged internally, and per-event weights are handled consistently throughout. Arbitrary bin-wise functional transformations are readily specified, e.g. for visualizing signal-to-background significance as a function of cut threshold. MInOS implements machine learning on computed event statistics with XGBoost. Ensemble training against distinct background components may be combined to generate composite classifications with enhanced discrimination. ROC curves, as well as score distribution, feature importance, and significance plots are generated on the fly. Each of these tools is controlled via instructions supplied in a reusable cardfile, employing a simple, compact, and powerful meta-language syntax. 
    more » « less